The Synthesis of a Novel Iptycene Containing the Triphenylene Unit

Framȩisco M. Raymo, Melchiorre F. Parisi, and Franz H. Kohnke*
Dipartimento di Chimica Organica e Biologica, Universita di Messina, Salita Sperone 31, 98166 - S. Agata - Messina, Italy

Abstract

Abmenet: A movel hydrocarbon composed of three 9, 10-dihydroanthracene mnits fused to the three pairs of β positions on a central miphenylene ring has been symthesised. The molecule defines two large cup-shaped cavities lined with n-electron systems.

Iptycenes ${ }^{1}$ are rigid molecules which contain several triptycene units. The synthesis and properties of numerous examples of this class have been described by Hart and coworkers 1,2 in the recent years. Iptycenes have been classified ${ }^{3}$ on the basis of the number of different independent aromatic planes that are present in the molecule, and of the types of aromatic units bearing the 9,10 -dihydroanthracene residues. Iptycenes containing naphthalene and anthracene have been synthesized previously. 1,2 Here we describe the synthesis of a heptiptycene based on the triphenylene nucleus.

The endocyclic double bond of 7-oxanorbornene - and of compounds that contain such a moiety - behaves as a dienophile and undergoes the Diels-Alder reaction with a variety of dienes with high facial diastereoselectivity. ${ }^{4}$ A recently improved synthesis ${ }^{5}$ of syn and anti triphenylenetrisendoxides $1 \mathrm{a} / \mathrm{b}$ encouraged us to explore the use of the anti isomer ${ }^{6} \mathbf{1 b}$ for the rapid assembly of the hepiptycene $\mathbf{3}$ by means of a triple Diels-Alder reaction followed by acid-catalyzed triple dehydration (Scheme).

The reaction of $\mathbf{1 b}$ with 3.5 molar equivalents of anthracene (refluxing xylene, 48 h , under an argon atmosphere) gave the tris-adduct 2 , which was isolated (38% based on $\mathbf{1 b}$) by column chromatography $\left(\mathrm{SiO}_{2}\right.$. toluene/ethyl acetate $9 / 1$) as the most chromatographically-mobile fraction after anthracene. The $\mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR spectrum ${ }^{7}$ of 2 ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) shows the two pairs of methine hydrogen atoms, belonging to the

7-oxanorbomane residues having the relative syn stereochemistry of the oxygen bridges, as two overlapping $A B$ systems in which the A and the B parts are coupled only with a small coupling constant (2.7 Hz) with the adjacent oxymethine hydrogen atoms ($2 \times A B M X$ systems). The corresponding protons of the third 7-oxanobornane unit appear as broed signals. These data provide evidence ${ }^{4}$ for the endo configuration of all the methine hydrogen atoms of the 7 -oxanorbornane moieties of 2 . The ${ }^{13} \mathrm{C} \mathbf{N M R}$. spectrum (75.46 MHz , CDCl_{3}) shows 26 resonances, including four overlapping signals for the 30 heterotopic carbon atoms present in 2.

The triple dehydration of 2 with acetic anhydride/hydrochloric acid gave a mixture of partially dehydrated and acetylated products, but proceeded satisfactorily when 2 was suspended in ethanol containing 20% of concentrated perchloric acid and refluxed for 12 h . Treatment of the crude mixture with aqueous sodium bicarbonate promoted the precipitation of a white solid which was filtered off, and subjected to column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/toluene gradient) to give a white solid (40\%) which was characterized as the heptiptycene 3. The ${ }^{1}$ H NMR spectroscopic data for 3 are consistent ${ }^{8}$ with its $\mathbf{D}_{3 h}$ symmetry showing only four types of resonances for the four sets of homotopic hydrogen atoms.

Heptiptycene 3 has some interesting features compared to other members of this class of compounds described in the literature: i) to the best of our knowledge, the central unit - triphenylene - is the largest aromatic polycyclic hydrocarbon ever included in the structure of higher iptycenes; ii) the molecule has two equivalent cup-shaped cavities lined with π-electron systems large enough to accommodate a six-membered ring; iii) the 9,10-dihydroanthracene moieties provide barriers that should impose steric selectivity upon the complexing ability of triphenylene ${ }^{9}$ towards numerous aromatic compounds.

We are currently investigating the potential use of $\mathbf{3}$ as a host for aromatic substrates.

Referemees and Note:

1. Hart H., Bashir-Hashemi A., Luo J., and Meador M. A., Tetrahedron, 1985, 42, 1641-1654.
2. (a) Shahlai K., Hart H., and Bashir-Hashemi A., J.Org.Chem., 1991, 56, 6912-6916; (b) Shahlai K. and Hart H., J.Org.Chem., 1991, 56, 6905-6912, and references therein.
3. Hart H., Shamouilian S., and Takehira Y., J.Org.Chem., 1981, 46, 4427-4432.
4. (a) Ashton P. R., Brown G. R., Isaacs N. S., Giuffrida D., Kohnke F. H., Mathias J. P., Slawin A. M. Z., Smith D. R., Stoddart J. F., and Williams D. J., J.Amer.Chem.Soc., 1932, 114, 6330-6353 and references therein; (b) Ashton P. R., Girreser U., Giuffrida D., Kohnke F. H., Mathias J. P., Raymo F. M., Slawin A. M. Z., Stoddart J. F., and Williams D. J., J Amer.Chem.Soc., 1s93, in press, and references therein..
5. (a) Raymo F., Kohnke F. H., Cardullo F., Girreser U., and Stoddart J. F., Tetrahedron, 1992, 48, 6827-6838; (b) The triphenylene trisendoxydes 1a/b were previously synthesized by Stringer M. B. and Wege D., Tetrahedron Lett., 198e, 21, 3831-3834.
6. Both 1a and 1b can be used for the synthesis of 3, since the relative stereochemistry of the oxygen bridges is loat in the dehydration step. However, 1b is more readily available than la (see ref. 5a).
7. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$) 8: $7.41-6.88(24 \mathrm{H}, \mathrm{m}), 4.87(2 \mathrm{H}, \mathrm{bs}), 4.83$ (2H, bs), 4.78 (2H, s), $4.17\left(2 \mathrm{H}, \mathrm{X}\right.$ part of 2 xABMX systems, $\left.\mathrm{J}_{A x}=2.7, \mathrm{JBx}^{2}=0, \mathrm{JMx}=0 \mathrm{~Hz}\right), 4.05(2 \mathrm{H}, \mathrm{bs}), 3.92(2 \mathrm{H}, \mathrm{M}$ part of $2 \times A B M X$ systems, $\left.J_{B M}=2.7, J_{A M}=0, J_{M X}=0 \mathrm{~Hz}\right), 2.13(2 H, B$ part of $2 \times A B M X$ systems, $\left.\mathrm{J}_{A B}=8, \mathrm{~J}_{B M}=2.7, \mathrm{JBX}^{2}=0 \mathrm{~Hz}\right), 1.84\left(2 \mathrm{H}, \mathrm{A}\right.$ part of 2 xABMX systems, $\mathrm{J}_{A B}=8, \mathrm{~J}_{A M}=0, \mathrm{~J}_{A X}=$ 2.7 Hz), 1.69 (2H, bs); 13C NMR ($\left.\mathrm{CDCl}_{3}, 75.46 \mathrm{MHz}\right) \mathrm{8}: 143.8,143.7,143.7,141.4,141.3$, $141.2,135.3,135.1,135.01,126.1,126.0,125.9,125.8,125.8,125.6,123.8,123.7,123.6$, $123.5,123.5,123.4,79.6,79.6,79.3,48.7,48.6,48.5,47.4,47.3,47.2 ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{c}=810\left(\mathrm{M}^{+}\right)$; m.p from acetone: $406^{\circ} \mathrm{C}$ (dec.).
8. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \mathrm{s}: 8.57(6 \mathrm{H}, \mathrm{s}), 7.45-7.42(12 \mathrm{H}, \mathrm{m}), 7.02-6.99(12 \mathrm{H}, \mathrm{m}), 5,61$ ($6 \mathrm{H}, \mathrm{s}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75.46 \mathrm{MHz}$) 8: $144.9,143.1,127.4,125.3,123.6,117.8,54.2$; MS (positive ion FAB): m/e $756\left(\mathrm{M}^{+}\right)$; did not melt when heated up to $410^{\circ} \mathrm{C}$.
9. Foster R., "Organic Charge-Transfer Complexes", Academic Press, 1969, New York.
